Pd2+-Promoted Cyclization in Linear Triquinane Synthesis Total Synthesis of (±)-Hirsutene

Masahiro Toyota, Youichi Nishikawa, Kayoko Motoki, Naomi Yoshida and Keiichiro Fukumoto*

Pharmaceutical Institute, Tohoku University. Aobayama. Sendsi 980. Japan

abstract: A sequence leading from *trans-6-methyl-3-cyclohexenecarboxylic acid (3) to the cis, anti, cis - tricyclopentane ring* system of the hirsutanes is described in which the key step utilizes an acid catalyzed intramolecular conjugate addition (5- \rightarrow 6a) and a Pd^{2+} -promoted highly stereocontrolled cyclization (7- \rightarrow 8).

Hirsutene $(1)^{1}$ and its more highly oxidized congener coriolin $(2)^{2}$ were isolated from Basidomycete *Coriolus consors.* The antibiotic and antitumor activities³ of several members of the class have prompted widespread efforts at their synthesis.4 There remains, however, a conspicuous need of general methods to prepare both simple and complex congeners and flexible ones to prepare topographical relatives.

We herein embark upon a program to develop a unified strategy for the synthesis of linear condensed cyclopentanoids employing an acid catalyzed intramolecular conjugate addition and a Pd^{2+} -promoted cyclization as the key steps.

Conversion of the acid 3 into the functionalized cyclopenta $[c]$ furan 7 was achieved via the reaction sequence summarized in Scheme I. A readily available $3⁵$ was transformed to the alcohol 4 in the usual manner (1. iodolactonization, 2. elimination, 3. reduction, 4. protection, 5. acetylation: 6. deprotection, 47% overall yield), which upon ozonolysis, Wittig reaction, and acetalization (69% from 4) afforded 5.

In order to construct the bicyclic compound 6a diastereoselectively, the acid catalyzed conjugate addition⁷ with TsOH in CH₂Cl₂ at 25 °C for 10 h was attemped, proceeding nicely to provide the ketone 6a, together with its C4-epimer 6b in a ratio of 10:1 (95%).⁸ After hydrolysis (96%) of the above mixture, the corresponding alcohols were on the action of o -nitrophenyl selenocyanate and tri-n-butylphosphine,⁹ converted into the selenide, oxidation of which with 30% hydrogen peroxide gave the olefin 7 (66%), along with recovered **6b.**

With convenient access to 7 secure, we then examined on the stereoselective Pd²⁺-promoted cyclization for the construction of the third ring. Completion of the synthesis of (\pm) -1 was carried out as summarized in **Scheme II.**

(a) I_2 , KI, NaHCO₃, CH₂Cl₂-H₂O(1:1), 0 °C; DBU, THF, reflux, (b) LAH, THF, (c) TBSCl, imidazole, DMF, (d) Ac₂O, Py, DMAP, (e) "BugNF, THF, (f) O3, MeOH, -78 °C; Me₂S, (g) Ph₃PCHCOMe, CHCl₃, (h) MeOH, PPTS, 50 °C, (i) TsOH, CH₂Cl₂, (j) LiOH, MeOH-H₂O (3:1), 0 °C, (k) o -NO₂PhSeCN, ${}^{n}Bu_3P$, THF; 30% H₂O₂, THF, 0 °C \rightarrow r.t.

Upon treatment of the silyl enol ether of 7 with Pd(OAc)₂ in MeCN-CH₂Cl₂, the desired ketone 8 was produced in 99% yield, presumably through the intermediacy of the oxo- π -allylpalladium complex.¹⁰ Results of nuclear Overhauser experiments confirm the assigned structrue for the ketone 8.11 The overall conversion of 3 into 8 was highly stereoselective and produced a functionalized tricycle in which the three contiguous quaternary stereogenic centers required for the eventual synthesis of (\pm)-1 had been installed **cleanly and efficiently.** With the efficient synthesis of the highly functionalized tricyclic ketone 8 realized, the stage was now set for the completion of the synthesis. Catalytic hydrogenation of 8 in the presence of 10% palladium-charcoal led quantitatively to the corresponding ketone, which was subjected to Wittig olefination (57%) followed by cyclopropanation¹² of the resulting olefin with CH₂I₂ and Et₂Z_n to furnish 9 (87%). The ring opening of 9 was next accomplished by sequential hydrolysis (79%) and Wittig reaction (77%) to give rise to the alcohol **10.**

Scheme II

(a) LDA, THF, -78 °C; TMSCI; Pd(OAc)₂, MeCN-CH₂Cl₂, (b) H₂, 10% Pd-C, EtOAc, (c) Ph₃P⁺MeBr^{-, "}BuLi, DME , reflux, (d) CH_2I_2 , Et_2Zn , C_6H_6 , (e) aq. $HClO_4$, acetone, (f) Ph_3P^+MeBr , $^{n}Buli$, DME, reflux, (g) PCC, NaOAc, CH₂Cl₂, (h) PdCl₂, CuCl, O₂, DMF-H₂O, (i)ⁿBu₄N⁺OH['], THF-E1₂O-5% KOH (8:8:11), reflux, (i) H₂, PtO₂, NaOAc, AcOH, (k) PCC, NaOAc, CH₂Cl₂.

Finally, successive PCC oxidation, Wacker oxidation, aldol condensation¹³ with epimerization, hydrogenation (84% from **lo)14** and PCC oxidation (74%) provided the ketone **11,** displayed spectral properties identical with those reported¹⁵ in a total synthesis of hirsutene (1) , thus completing a formal synthesis of the latter.

In conclusion, a new, highly diastereocontrolled approach for the synthesis of hirsutene **(1)** has been developed. Our methodology based on acid catalyzed conjugate addition and Pd^{2+} -promoted cyclization should prove an efficient tool in the synthesis of other complex linear triquinane sesquiterpene systems, such as coriolin and hirsutic acid.16

Acknowledgement:We are grateful to Dr. Daniel D. Stembach for providing us with the spectral data of one of the intermediates in his hirsutene synthesis.

References and Notes

- **(1) Nozoe, S.;** Furukawa, J.; Sankawa, U.; Shibata, S. *Tetrahedron Len.* 1976, 195198.
- (2) Nakamura, H.; Takita, T.; Umezawa, H.; Kunishita, M.; Nakayama, Y.; Iitaka, Y. J. Anfibior. 1974,27, 301-302, and refs cited therein.
- (3) Biological activity. Coriolin and derivatives: Kunimoto, T.; Umezawa, H. *Biochim.* Biophys. *Acru* 1973, 318, 78-89, Ishizuka, M.; Iinuma, H.; Takeuchi, T.; Umezawa, H. J. *Antibior. 1972,25, 320-321,* and refs cited therein. Complicatic acid: Mellows, G.; Mantte, P. G.; Feline, T. C. *Phyfochem.* 1973,12,2717- 2720, and refs cited therein.
- (4) Leading references to previous synthesis of hirsutene:(a) Ramig, K.; Kuzemko, M. A.; McNamara, K.; Cohen, T. J. *Org. Chem.* 1992,57, 1968-1969. (b) Plamondon, L.; Wuest, J. D. J. *Org. Chem.* 1991.56, 2076-2081. For triquinanes in general, see: Paquette, L. A.; Doherty, A. M. *Polyquinune Chemistry;* Springer-Verlag: Berlin, Heidelberg, Germany, 1987; p.184. See also: Curran, D. P. *Advances in Free Radical Chemistry;* JAI Press: Greenwich 1990; Vol. 1, p.121.
- (5) Christol, H.; Donche, A.; Plénat, M^{lle} F. *Bull. Soc. Chim. France* 1966, 1315-1324.
- *(6)* When ozonolysis was carried out on the TBS ether 12, only complex mixtures of decomposition products were obtained due probably to abnormal ozonization. Young, W. G.; McKinnis, A. C.; Webb, I. D.; Roberts, J. D. *J. Am. Chem. Sot. 1946,68, 293-296.*

- **(7)** Stork, G.; Atwal, K. S. *Tetrahedron Left. 1983,24, 3819-3822.*
- *(8)* Although the stereochemical assignment of **6a, 6b** and 7 was not possible at this monent, successful elaboration of the olefin 7 to the known lactone $13⁷$ definitely confirmed their stereochemistries as shown below.

- (9) (a) Sharpless. K. B.; Young, M. W. J. Org. *Chem. 1975.40.947-949.* (b) Grieco. P. A.; Gilman, S.; Nishixawa, M. *J. Org. Chem. 1976,41. 1485-1486.*
- (10) (a) Ito, Y.; Aoyama, I-I.; Hirao, T.; Mochizuki, A.; Saegusa, T. *J. Am. Chem. Sot.* 1979,101, 494-496. (b) Ito. Y.; Aoyama, H.; Saegusa. T. *J. Am. Chem. Sot.* 1980.102.4519-4521. (c) Kende, A. S.; Roth, B.; Sanfilippo, P. *J. Am. Chem. Sot. 1982.104,* 1784-1785. (d) Kende. A. S.; Roth, B.; Sanfilippo, P. J.; Blacklock, T. J. *J. Am. Chem. Sot.* 1982,104,5808-5810. *(e) Larock,* R. C.; Lee, N. H. *Tetruhedron Len.* 1991.32. 5911-5914.
- (11) Flash column chromatography on silica gel (41 hexane-EtGAc) provided two fractions. The first fraction gave 8a (minor epimer); IR (CHCl3): 1730 cm^{-1} . ¹H NMR (500 MHz, CDCl3): d 1.02 (3H, s), 2.07 (1H. ddd, J=19.5, 9.3 and 1.5), 2.35 (1H, ddd, J=19.5, 9.8, and 1.5), 2.45 (1H, br d, J=19.0), 2.54 (1H, br dd, J=19.0 and 9.8), 3.29-3.37 (1H, m), 3.61-3.70 (1H, m), 4.26-4.34 (2H, m), 5.66-5.69 (1H, m). The second fraction gave 8b (major epimer); IR (CHCl3): 1730 cm^{-1} . ¹H NMR (500 MHz, CDCl3): d 0.98 $(3H, s)$, 2.08 (1H, ddd, J=19.2, 8.9 and 1.0), 2.37 (1H, ddd, J=19.2, 9.8 and 1.0), 2.49 (1H, br d, J=19.2), 2.53 (1H. br dd, *J=19.2* and 10.0). 2.89 (1H. ddd, J=lO.O, 8.9 and l.O), 3.57-3.65 (lH, m), 4.28 (lH, br d, J=12.0), 4.46 (lH, ddd, J=12.0, 1.8 and 1.2), 5.63-5.66 (lH, m).

- (12) Furukawa, J.; Kawabata, N.; Nishimura, J. *Tetrahedron Len. 1966, 3353-3354.*
- *(13)* Stevens, K. E.; Paquette, L. A. *Tetrahedron Lerr.* 1981,22,4393-4396.
- (14) Trost, B. M.; Curran, D. P. *J. Am. Chem. Sot.* 1981,103, 7380-7381.

As expected, the over-reduction diastereoselectively occurred at this point, giving the alcohol 14 as a sole product. The stereochemistry of 14 was established by comparison of its ¹H NMR (500 MHz) spectrum with that reported 17 in the literature.

6H H NMR (500 MHz, CDCl₃): δ 0.96 (3H, s), 0.97 (3H, s), 1.06 (3H, s), 1.29-1.52 (6H, m), **1.59- 1.77 (4H,** m), **1.92-2.01 (lH,** m), **2.05-2.11 (lH,** m), **2.53-2.66 (2H,** m), **3.78 (lH, dd, J=6.7** and **6.7).**

- (15) Stembach, D. D.; Ensinger, C. L. *J. Org. Chem.* 1990,55, 2725-2736.
- (16) Comer, F. W.; McCapra, F.; Qureshi, I. H.; Scott, A. I. *Terruhedron* 1967,23, *4761-4768.*
- *(17)* Tatsuta. K.; Alcimoto, K.; Kinoshita, M. *J. Am. Chem. Sot. 1979,101,6116-6118.*

(Received in Japan 31 May 1993; accepted 16 July 1993)